US009137015B2

a2 United States Patent

Jin et al.

US 9,137,015 B2
Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)
")

@

(22)

(65)

(1)

(52)

(58)

PROTECTION SCHEME FOR AACS KEYS

Inventors: Chao Jin, Hangzhou (CN); Weitao Sun,
Hangzhou (CN)

Assignee: ArcSoft, Inc., Fremont, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1606 days.

Appl. No.: 11/969,687

Filed: Jan. 4, 2008

Prior Publication Data

US 2010/0020968 A1 Jan. 28, 2010

Int. Cl1.

GO6F 15/16
HO4L 9/08
HO4N 5/913
HO4N 217258
HO4N 21/8355
HO4L 9/14
HO4N 5/765
HO4N 5/85

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2011.01)
(2011.01)
(2006.01)
(2006.01)
(2006.01)

HO4L 9/0891 (2013.01); HO4L 9/14
(2013.01); HO4N 5/913 (2013.01); HO4N
21/2585 (2013.01); HO4N 21/8355 (2013.01);
HO4L 2209/603 (2013.01); HO4N 5/765
(2013.01); HO4N 5/85 (2013.01); HO4N
2005/91364 (2013.01)
Field of Classification Search

CPC HO4N 5/765; HO4N 5/85; HO4N 5/913;
HO4N 21/2585; HO4N 21/8355; HO4AN
2005/91364; HOAL 9/0891; HO4L 9/14;
HO4L 2209/603

See application file for complete search history.

300 \

(56) References Cited
U.S. PATENT DOCUMENTS
5,668,880 A * 9/1997 Alajajianccccecoenne. 370/342
5,832,090 A * 11/1998 Raspotnikcccccoeveneee. 705/66
5,857,025 A * 1/1999 Andersonetal. 380/28
6,009,177 A * 12/1999 Sudia 713/191
6,480,117 B1* 11/2002 Flick 340/12.28
6,563,928 B1* 5/2003 Vanstoneetal. 380/30
6,704,870 B2* 3/2004 Vanstoneetal. 713/180
6,990,200 B1* 1/2006 Kasaharaetal. 380/44
7,876,895 B2* 1/2011 Jinetal. ...cccoooovirincnns 380/37
8,023,653 B2* 9/2011 Doherty et al .. 380/201
8,121,287 B2* 2/2012 Jinetal.cccoeovvrneen. 380/36
2002/0152392 Al* 10/2002 Hardyetal. 713/189
2003/0086567 Al* 5/2003 Okamoto et al. .. 380/201
2004/0103292 Al* 52004 Shirouzuccceceevenee 713/193
(Continued)
OTHER PUBLICATIONS

Nate Lawson; Anti-debugger techniques are overrated; Apr. 19,
2007; root labs rdist; 1 Page.*

(Continued)

Primary Examiner — Arvin Eskandarnia

Assistant Examiner — Anthony Fabbri

(74) Attorney, Agent, or Firm — Patent Law Group LLP;
David C. Hsia

(57) ABSTRACT

A method for protecting a software video player having
Advanced Access Content System (AACS) includes reading
segments of an encrypted first key from noncontiguous
regions of memory, assembling the segments to form the
encrypted first key, decrypting the encrypted first key with a
second key to form a first key, extracting AACS key data from
a pack file, decrypting the AACS key data to retrieve AACS
Device Keys, generating an AACS Title Key using the AACS
Device Key, clearing the AACS Device Keys and the first key
from memory after the AACS Title Key is generated, decry-
ing encrypted AACS content with the AACS Title Key to form
AACS content, and displaying the AACS content.

26 Claims, 10 Drawing Sheets

314

318

Monitor Pracess

318 320

Debug Tools
Detector

Detectthe player is
under debugging

‘Anti-debugging
countermeasures

4
i
i

U 310

Application layer

301

207

306
AACS Key Flle
Ke

a
AACS Key Manager ra
0

Authentication

Authentication,
exchange key
and encrypted

Reverse Enginesfing
Protection

BOMY Engine with

AACS Engine with

Reverse Enginesring [C—— CodecEngine | Content
Protection

data transfer 312

308

AV Straam,
AACS MKB 8 etc.

Softwars Player
{8.9. oxeauted by CPU
in computer or appliant

US 9,137,015 B2

Page 2
(56) References Cited 2007/0201691 Al* 82007 Kumagaya 380/30
2008/0013732 Al* 1/2008 Ohno 380/277

U.S. PATENT DOCUMENTS 2008/0049932 Al* 2/2008 Onoetal.co..... 380/44

2004/0123122 Al* 6/2004 Asaietal.ccoo...... 713/189 OTHER PUBLICATIONS
*

%882;8};2;82 ii* 2;588;‘ ;?ts(})l}ll etal. ;gg;g Len Norton; Cracking Embird 7.11 Evaluation; Jan. 24, 2007; 5
2005/0138624 Al* 6/2005 Morrison et al. 718/102 Pages.*))))
2005/0195975 Al* 9/2005 Kawakita 380/30 Woodmann; Anti-debugging & Software Protection Advice; Dec. 31,
2006/0047961 Al* 3/2006 Hashimoto et al. 713/173 2006; 1 Page.* _ _
2006/0116969 Al* 6/2006 Hatanakaetal. 705/71 Nagareshwar Talekar; Detecting & Defeating the Debuggers;
2006/0117013 Al* 6/2006 Wada 707/9 SecurityXploded.com; Jul. 15, 2007; 1 Page.*
2006/0153381 Al* 7/2006 Kim et al 380/228
2006/0188098 Al* 8/2006 Kumagaietal. ... 380/239 * cited by examiner

U.S. Patent Sep. 15, 2015 Sheet 1 of 10 US 9,137,015 B2

Set of Device Keys Playback Device
and etc.

W

Media Key Block N Process MKB
(MKB) (Subset-Difference Tree System) \
Media Key (Km)
]
4
[Volume ID) >| AES-G
|
Volume Unique Key (Kvu)
[Encrypted Title Key(sD >| Decrypt
|
Title Key (Kt)
[Encrypted Content) >| Decrypt p=——p Content

Fig. 1
(Prior Art)

U.S. Patent Sep. 15, 2015 Sheet 2 of 10 US 9,137,015 B2
200 \
207
Application layer a
20t
AACS Device Keys | ,~203
& efc.
1 s 202 s 206 Vs 208
AACS Engine » BDMV Engine CodecEngine —— Content
Software Player
AV Stream, (e.q... executed by CPU
AACS MKB & etc. in computer or appliance)
Media Source
(e.g.. optical drive)

204
Fig. 2

(Prior Art)

U.S. Patent Sep. 15, 2015

300 \

Sheet 3 of 10 US 9,137,015 B2

/‘314

Monitor Process

Vs 316 s 318 s 320
Debug Tools Detect the playeris | Anti-debugging
Detector under debugging | countermeasures
A 0
Il 1
I 1
¥ i el
|
: E Application layer
% s
AACS Key File i I
|
i i s 301
307 11
e 304 R; Tom : : Authentication
11
AACS Key Manager Key || i
L Authentication,
+ 302 i E exchange key
AACS Engine with I \/ and encrypted
ineeri - data transfer 312
Reverse Enainceing BDMY Engine with e
» Reverse Engineering [<——— CodecEngine [Content
Protection
\- 308
AV Stream, Software Player
AACS MKB & etc. (e.g.. executed by CPU
in computer or appliance)
Media Source
204 (e.g.. optical drive)

Fig. 3

U.S. Patent Sep. 15, 2015 Sheet 4 of 10 US 9,137,015 B2

306
W 406
Encryption Header
. | 404
Pack File Header
Key Data
/-402

Fig. 4

U.S. Patent Sep. 15, 2015 Sheet 5 of 10 US 9,137,015 B2

500 1

Encrypt a random key with a temporary J_ 504
random key

y

Divide the encrypted random key into J‘ 506
multiple parts and store them in
noncontiguous memory regions

»

Y
No 508
AACS keys data needed?

Yes

|

Assemble and decrypt the encrypted J_ 510
random key

. 512
Decrypt the AACS key file J_

' 514
Retrieve the AACS key data J_

Provide the AACS key data to the
AACS engine, which uses the Host J_ 516
Certificate to authenticate with CD

driver and the Device Key to calculate

Title Key(s)
' 518
Clear the AACS keys J_
’ 520
Clear the random key J_

Fig. 5

U.S. Patent Sep. 15, 2015 Sheet 6 of 10 US 9,137,015 B2
{ __asm
printf("Hello World!\n"); {
return 0; __asmjz $+13 602
} __asm jnz $+7 -
__asm _emit 08dh
}
eor
:00401000 6830704000 push 00407030
:00401005 E806000000 call 00401010 603
:0040100A 83C404 add esp, 00000004 S
:0040100D 33C0 XOr ¢ax, eax
:0040100F C3 ret
:00401000 55 push ebp
:00401001 8BEC mov ¢bp, esp
:00401003 0F8407000000 je 00401010
:00401009 OF8501000000 jne 00401010 604
:0040100F 8d6830 lea ebp, dword ptr[eax+30] =
:00401012 7040 jo 00401054
:00401014 00ES8 add al, ch
:00401016 07 pop €s
:00401017 000000 BYTE 3 DUP(0)
:0040101A 83C404 add esp, 00000004
:0040101D 33C0 XOr ¢ax, eax
:0040101F 5D pop ebp
:00401020 C3 ret

Fig. 6

U.S. Patent Sep. 15, 2015 Sheet 7 of 10 US 9,137,015 B2

310 312

Application
Layer

Codec Engine

AACS/BDMV Engines with
Reverse Engineering

Protection 302/308

Authentication Encrypted Data Transfer

Fig. 7

U.S. Patent

Set the authentication
flag FALSE

Generate a
random
number

&

Verifies the encrypted
random number
by the pre-
defined key

If the verification
succeeds, set the
authentication flag

TRUE

Sep. 15, 2015

Initiator

Sheet 8 of 10

/‘803

Send the random number

/—805

Send the encrypted
random number

Fig. 8

US 9,137,015 B2

>

/‘804

Encrypt the random
number by a
pre-defined key

|

Target

U.S. Patent Sep. 15, 2015 Sheet 9 of 10 US 9,137,015 B2

900 1

902

No

Authentication flag is TRUE?

Yes

|

J_ 904
Create random key

Time for a new key?

Yes

|

J_ 908
Create new random key

906
—No

r 910
Send the key to the codec engine J_

’ 912
Encrypt stream of data with the key J_

y

Send the encrypted data to the codec J_ e
engine

4 916
:f End)f
g

Fig. 9

U.S. Patent Sep. 15, 2015 Sheet 10 of 10 US 9,137,015 B2

1000 1

1002

Player running
after being started?

Yes
1004
+«—Yes Detect debugger?
No

1006

Is player under
debugging conditions?

No >

| J‘ 1010 | J‘ 1008

Terminate the player Wait for a timeout

Fig. 10

US 9,137,015 B2

1
PROTECTION SCHEME FOR AACS KEYS

FIELD OF INVENTION

This invention relates to apparatus and method for protect-
ing the Advanced Access Content System (AACS) in soft-
ware video players.

DESCRIPTION OF RELATED ART

The Advanced Access Content System (AACS) is a stan-
dard for content distribution and digital rights management
that is intended to restrict access to and copying of High
Density (HD) and Blue-ray Disk (BD) media. It was devel-
oped by AACS Licensing Administrator, LLC (AACSLA), a
consortium that includes Disney, Intel, Microsoft, Matsushita
(Panasonic), Warner Brothers, IBM, Toshiba, and Sony.

FIG. 1 presents a simplified view of encryption and decryp-
tion processes for pre-recorded video content provided by
AACS. An owner of content that is to be protected provides
the content in the form of one or more Titles to a licensed
replicator. The licensed replicator selects a secret, random
Title Key (Kt) for encrypting each Title. The licensed repli-
cator also assigns a random Volume ID to the protected Title
or a set of protected Titles to safeguard against “bit-by-bit
copying” of protected content. The Volume ID is stored on a
prerecorded medium in a manner that cannot be duplicated by
consumer recorders.

For each protected Title or a set of protected Titles to be
included together on the pre-recorded medium, the AACSTLA
provides to the licensed replicator a Media Key Block
(MKB), a Sequence Key Block, and a secret Media Key
(Km). The MKB will enable all compliant devices, each using
their set of secret Device Keys and Sequence Keys, to calcu-
late the same or variants of the Media Key. If a set of Device
Keys is compromised in a way that threatens the integrity of
the system, an updated MKB can be released that will cause
a device with the compromised set of Device Keys to calcu-
late a different Media Key than the remaining compliant
devices. In this way, the compromised Device Keys are
“revoked” by the new MKB.

For each protected Title, the licensed replicator calculates
a cryptographic hash of the Media Key and the Volume ID,
and uses the result to encrypt the Title’s Title Key. The
encrypted Title Key and the MKB are stored on the pre-
recorded medium.

The AACS LA provides a set of 253 secret Device Keys to
the licensed manufacturer for inclusion into each compliant
device or application produced. Device Key sets may either
be unique per licensed product, or used commonly by mul-
tiple products.

The licensed product reads the MKB from the pre-recorded
medium, and uses its Device Keys to process the MKB and
thereby calculate the Media Key. If the given set of Device
Keys has not been revoked, then the calculated Media Key
will be the same Media Key that was used by the licensed
replicator as described above.

For each protected Title the licensed product then calcu-
lates a cryptographic hash of the calculated Media Key and
the Volume ID, and uses the result to decrypt the Title’s
encrypted Title Key. The result is then used to decrypt the
Title.

Playback of AACS content is only performed using the
Title Keys and Volume ID which are read from the media.
Except otherwise provided by the AACS specifications, the
values used to enable playback of AACS content (e.g. Title
Keys and Volume ID) shall be discarded upon removal of the

10

30

40

45

2

instance of media from which they were retrieved. Any
derived or intermediate cryptographic values shall also be
discarded.

FIG. 2 illustrates a conventional BD software video player
200 for AACS content. Software video player 200 is typically
executed by a processor in a computer or in an appliance from
codes and data loaded into volatile memory. Software video
player 200 includes a player engine 201 with an AACS engine
202 and AACS keys 203 acquired from AACS LA. AACS
keys 203 include a Host Certificate, a set of Device Keys, and
a set of Sequence Keys. Using AACS keys 203, AACS engine
202 decrypts data from an encrypted data source 204.
Depending on the user input, a BDMV (Blu-ray Disk Movie)
engine 206 in player engine 201 instructs AACS engine 202
to access the appropriate files on encrypted data source 204,
receives the file from AACS engine 302, and forwards the
appropriate data to codec engine 208 in player engine 201.
Specifically, BDMV engine 206 splits the file that contains
both audio and video data (and other data stream such as
subtitles) and sends the appropriate data to a video codec and
an audio codec (and other modules) in codec engine 208.
BDMY engine 206 also controls the synchronization between
the video and audio from the video and the audio codecs.
Codec engine 208 decodes the data and presents the content
for display. Software video player 200 may include an appli-
cation layer 207 that generates the user interface for control-
ling player engine 201. Application layer 207 receives user
controls and notifies BDMV engine 206 to respond to the user
controls, such as playing a title. Application layer 207 also
receives message from BDMYV engine 206 to display to the
user.

Hackers have found various AACS keys by using debug-
gers to inspect the memory space of running HD-DVD and
BD software video players. Thus, what are needed are method
and apparatus for safeguarding the AACS content in HD-
DVD and BD software video players.

SUMMARY

In embodiments of the invention, methods are provided to
protect AACS Device Keys in a software video player and to
encrypt data transfers between modules of the player.

In one embodiment, AACS Device Keys and their renewal
information are packed into a file and then encrypted. When
the software video player starts, the encrypted file is read into
memory and decrypted. If the Device Keys have expired, the
software video player will prompt the user to renew the
Device Keys. Otherwise the software video player uses the
Device Keys to calculate AACS Title Keys for decoding
encrypted content. Afterwards, the software video player
clears the memory of keys by filling it with random numbers.

In one embodiment, to prevent static analysis, the Title
Keys are encrypted with a random number and they are
decrypted only when they are used. After they are used, the
Title Keys are encrypted immediately with a new random
number. In addition, junk codes are inserted into essential
places of the binary machine code of the software video
player. Furthermore, the binary machine code self-decrypts
dynamically only at runtime.

In one embodiment, to prevent dynamic debugging, a
monitoring mechanism in the system service is provided to
detect debugging tools and determine whether or not the
software video player is under conditions that indicate the
player is being debugged.

US 9,137,015 B2

3

In one embodiment, authentication is used between certain
modules of the player and encryption is used in data transfer
between certain modules of the player.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a simplified view of the AACS system.

FIG. 2 illustrates a conventional software video player
implemented with AACS.

FIG. 3 illustrates a software video player implemented
with additional safeguards for the AACS system in one
embodiment of the invention.

FIG. 4 illustrates an encrypted pack file format of AACS
key data in one embodiment of the invention.

FIG. 5 is a flowchart of amethod for an AACS key manager
in the software video player of FIG. 3 in one embodiment of
the invention.

FIG. 6 illustrates the use of junk code in the source code in
one embodiment of the invention.

FIG. 7 illustrates authentication and encrypted data trans-
fer between modules in one embodiment of the invention.

FIG. 8 illustrates authentication between modules in one
embodiment of the invention.

FIG. 9 is a flowchart of a data encryption process between
modules in one embodiment of the invention.

FIG.10is a flowchart of a debugging monitoring process in
one embodiment of the invention.

Use of the same reference numbers in different figures
indicates similar or identical elements.

DETAILED DESCRIPTION OF THE INVENTION

Conventional software video player 200 of FIG. 2 has
certain disadvantages against hacking. First, AACS keys 203
are normally encoded into individual binary files for carrying
out renewal. These binary files can be detected and analyzed
to determine AACS keys 203. Second, AACS keys 203 are not
encrypted so they can be obtained by comparative analysis
through memory dump. Even if they were encrypted, a hacker
can use a debugging tool to find AACS keys 203 and use other
tools to decrypt them. Third, when the modules of software
video player 200 are implemented as filters with Microsoft
DirectShow software development kit (SDK), data transfers
between the modules are not protected.

In embodiments of the invention, software video player is
provided with (1) encryption of the AACS keys, (2) counter-
measures against static analysis, (3) countermeasures against
debugging tools, (4) authentication between modules of the
player, and (5) encryption of data transfer between modules
of the player.

FIG. 3 illustrates a software video player 300 in one
embodiment of the invention. To overcome the shortcomings
of the conventional video player, software video player 300
includes the five features described above to strengthen the
protection provided by the AACS.

Software video player 300 is typically executed by a pro-
cessor in a computer or in an appliance from codes and data
loaded in volatile memory. Software video player 300
includes a player engine 301 with an AACS engine 302.
AACS engine 302 has hacking countermeasures so it does not
directly access AACS keys. Instead, AACS engine 302
requests the AACS keys from an AACS key manager 304 only
when the AACS keys are needed. In response, AACS key
manager 304 decrypts an AACS key file 306 and provides the
AACS keys to AACS engine 302.

FIG. 4 illustrates the format of AACS key file 306. AACS
key file 306 includes AACS key data 402, a pack file header

25

30

40

45

50

55

65

4

404, and an encryption header 406. AACS key data 402
includes a Host Certificate, a set of Device Keys, and a set of
Sequence Keys provided by AACS LA. Pack file header 404
includes the version of the pack file tool, the names of the
source files, the creation date of the pack file, and the expira-
tion date of AACS keys provided by AACS LA. Encryption
header 406 includes information about the pack file itself,
such as file size, the data offset, and so on.

The contents of AACS key file 306 is packed and then
encrypted by a Pack Tool using a random key 307 (FIG. 3).
The pack tool can use an encryption algorithm, such as AES.
AACS key manager 304 manages random key 307 for AACS
key file 306, uses random key 307 to decrypt AACS key file
306, retrieves AACS key data 402 from decrypted AACS key
file 306, and provides AACS key data 402 to AACS engine
302. More importantly, AACS key manager 304 prevents
hackers from finding AACS key data 402 through a memory
dump. Using a memory dump, a hacker takes several static
images of memory of an algorithm under different states and
then finds the sensitive information by comparing the static
images. To prevent such a memory dump, AACS key manager
304 uses several methods including (1) encrypting random
key 307 in the memory with a temporary random key that
changes frequently, (2) separating the encrypted random key
307 into several segment stored in noncontiguous memory,
(3) creating the necessary AACS keys only when they are
used, and (4) clearing the memory by filling the memory with
random data after using the AACS keys.

FIG. 5 is a flowchart of a method 500 performed by AACS
key manager 304 in one embodiment of the invention.

In step 504, AACS key manager 304 encrypts or masks
random key 307 with a temporary random key to prevent
random key 307 from appearing directly in the memory dur-
ing long playbacks. In one embodiment, AACS key manager
304 encrypts random key 307 by XORing it with the tempo-
rary random key. AACS key manager 304 creates a new
temporary random key each time software video player 300 is
started. Step 504 is followed by step 506.

In step 506, AACS key manager 304 divides the encrypted
random key 307 into multiple segments and stores them in
noncontiguous memory regions. For example, AACS key
manager 304 allocates different buffers through the operating
system to store the segments. This again prevents random key
307 from appearing directly in the memory. Step 506 is fol-
lowed by step 508.

In step 508, AACS key manager 304 determines if AACS
engine 302 is requesting AACS key data 402. If so, then step
508 is followed by step 510. Otherwise step 508 loops until
AACS engine 302 requests AACS key data 402.

In step 510, AACS key manager 304 assembles the seg-
ments of the key 307 and decrypts encrypted random key 307
with the temporary random key.

In step 512, AACS key manager 304 decrypts AACS key
file 306 with random key 307. Step 512 is followed by step
514. In one embodiment, AACS key manager 304 reads the
pack file header 404 to make sure the AACS keys have not
expired. If the AACS keys have expired, AACS key manager
304 will prompt for the newest AACS keys. The newest
AACS keys may be downloaded through the Internet or read
from a disc.

In step 514, AACS key manager 304 retrieves AACS key
data 402 from the decrypted AACS key file 306. Step 514 is
followed by step 516.

In step 516, AACS key manager 304 provides AACS key
data 402 to AACS engine 302. In response, AACS engine 302
uses the Host Certificate to authenticate the optical drive, and
the Device Keys and the Sequence Keys to calculate Title

US 9,137,015 B2

5

Key(s). As only the Title Key(s) are used for decrypting the
media when the player is running, AACS key data 402 and
random key 307 can be deleted after the Title Key(s) are
determined. To prevent static analysis, the Title Keys(s) may
be encrypted with a random number and decrypted only when
they are used. After they are used, the Title Keys may be
encrypted immediately with a new random number. Step 516
is followed by step 518.

In step 518, AACS key manager 304 clears AACS key data
402 from the memory by filling their memory locations with
random numbers. Step 518 is followed by step 520.

In step 520, AACS key manager 304 clears random key 307
from the memory by filling its memory location with random
numbers.

Referring back to FIG. 3, AACS engine 302 also includes
junk code as a countermeasure against static analysis. Spe-
cifically the junk code is inserted into the source code of
AACS engine 302 and then compiled into binary machine
code. The strategic placement of the junk code in critical
character strings and function transfers in the compiled
binary machine code, such as those for the AES, makes them
more difficult to decipher. FIG. 6 illustrates assembly code
603 disassembled by a disassembler program (e.g.,
W32Dasm) from the binary machine code compiled from
source code 601. FIG. 6 also illustrates an assembly code 604
disassembled from the binary machine code compiled from
code 601 after junk code 602 is inserted. As FIG. 6 shows, the
disassembled code is changed by the junk code and is very
difficult to decipher.

AACS engine 302 further uses self-extraction as a coun-
termeasure against static analysis. The binary code of AACS
engine 302 is compressed and encrypted into a file by a
development tool before release, and the file self-extracts
dynamically at runtime. The binary code of AACS engine 302
can be encrypted by XORing the code with a predefined
random number.

Referring back to FIG. 3, a BDMV engine 308 in player
engine 301 instructs AACS engine 302 to access the appro-
priate data on encrypted data source 204, receives the data
from AACS engine 302, and forwards the data to a codec
engine 312 in player engine 201. In one embodiment of the
invention, the modules of software video player 300 are
implemented as filters with Microsoft DirectShow SDK. In
one embodiment, AACS engine 302 and BDMYV engine 308
are implemented in a single filter.

Conventionally filters do not authenticate each other before
data transfer and data transfer between filters are not pro-
tected. This provides opportunities for a hacker to exploit the
filters if the hacker forges an empty filter that accepts
decrypted data and dumps the data to a file. Therefore, soft-
ware video player 300 is provided with authentication
between certain modules and data encryption in the data
transfer between certain modules in one embodiment of the
invention. As illustrated in FIGS. 3 and 7, authentication is
provided between BDMV engine 308 and application layer
310, and between BDMV engine 308 and codec engine 312.
Furthermore, data encryption is provided to data transfer
between BDMV engine 308 and codec engine 312.

FIG. 8 illustrates an authentication process 800 between a
module that initiates the authentication (hereafter “initiator”)
and a module that is the target of the authentication (hereafter
“target”) in one embodiment of the invention. For example,
BDMY engine 308 can be the initiator and one of application
layer 310 and codec engine 312 can be the target. Authenti-
cation is performed each time the modules connect.

15

30

40

45

60

6

In step 801, the initiator sets an authentication flag for the
target to FALSE, which indicates that the target has not been
authenticated. Step 801 is followed by step 802.

In step 802, the initiator generates a random number (e.g.,
a 16 byte). Step 802 is followed by step 803.

In step 803, the initiator sends the random number to the
target. Step 803 is followed by step 804.

In step 804, the target encrypts the random number with its
copy of a predefined key. Both the initiator and the target have
the predefined key in their source codes. Step 804 is followed
by step 805.

In step 805, the target sends the encrypted random number
to the initiator. Step 805 is followed by step 806.

In step 806, the initiator verifies the encrypted random
number by decrypting it with its copy of the predefined key. If
the decrypted result matches the random number the initiator
sent to the target, then the target is authenticated. Step 806 is
followed by step 807.

In step 807, the initiator sets the authentication flag to
TRUE if the decrypted result matches the random number
sent to the target. Otherwise the initiator leaves the authenti-
cation flag as FALSE.

FIG. 9 is a flowchart of a method 900 for BDMV engine
308 to forward data to codec engine 312 in an encrypted data
transfer in one embodiment of the invention.

In step 902, BDMV engine 308 determines if the authen-
tication flag for codec engine 306 is TRUE. If so, codec
engine 312 has been previously authenticated in process 800
(FIG. 8) and step 902 is followed by step 904. Otherwise step
902 is followed by step 916, which ends method 900.

In step 904, BDMV engine 308 creates a random number
(e.g., 16 byte) as a key. Step 904 is followed by step 906.

In step 906, BDMV engine 308 determines if a certain
amount of time has passed since the key was created so it is
time for generate a new key. If so, then step 906 is followed by
step 908. Otherwise step 906 is followed by step 910.

In step 908, BDMV engine 308 generates a new random
number as a key. Step 908 is followed by step 910.

In step 910, BDMV engine 308 sends the key to codec
engine 312 by a function call. Step 910 is followed by step
912.

In step 912, BDMV engine 308 encrypts a stream of data
with the key. In one embodiment, BDMV engine encrypts the
data by XORing them with the key. Step 912 is followed by
step 914.

Instep 914, BDMV engine 308 sends the encrypted data to
codec engine 312. In response, codec engine 312 uses the key
received in step 910 to decrypt the data and otherwise process
the data for display. Step 914 is followed by step 916, which
ends method 900.

Referring back to FIG. 3, software video player 300
includes a monitor process 314 in one embodiment of the
invention. Monitor process 314 is a system service that starts
running when the operating system is booted. If monitor
process 314 detects whether software video player 300 is
running a fixed time period after the software video player is
started. If so, monitor process 314 starts an anti-debugging
process.

FIG. 10 is a flowchart of a method 1000 for monitor process
314 in one embodiment of the invention.

In step 1002, monitor process 314 determines if software
video player 300 is running after the software video player
was started. If so, then step 1002 is followed by step 1004.
Otherwise step 1002 is followed by step 1008.

In step 1004, monitor process 314 determines if a debug-
ging tool is running. This function is represented by reference
numeral 316 (FIG. 3) in monitor process 314. Monitor pro-

US 9,137,015 B2

7

cess 314 has means to detect common debugging tools that
are specific to each tool. If monitor process 314 detects a
debugging tool, then step 1004 is followed by step 1010.
Otherwise step 1004 is followed by step 1006.
In one embodiment for the Win32 system, a check server is
provided to prevent debugging. In the Win32 system, there is
athread information block (TIB) for each running thread. The
check server checks TIB for flags that identify running
threads of debugging tools in protection ring 3 (applications),
such as Microsoft Visual Studio and OllyDbg. The check
server also detects some debugging tools that run in protec-
tion ring 0 (kernel) by their driver names, file names, and
sever names. For example, the check server attempts to create
the same object handles with the same driver, file, and server
names as the debugging tools. If the creation fails, then the
debugging tools are present. When there is debugging tool
attacking software video player 200, the check server closes
the player to prevent it from been hacked.
In addition to the check server, a start server is provided to
protect the check server from being attacked. The start server
double checks the check server and the player are running
without being debugged. Specifically, the start server deter-
mines whether or not the check server exists. Since the check
server is a program of the Windows operating system, the start
server looks for the processes of the check server using the
Windows API. If the start server cannot find the processes of
the check server, it restarts the check server again to protect
the player.
In step 1006, monitor process 314 determines if software
video player 300 is under conditions that indicate software
video player 300 is being debugged. This function is repre-
sented by reference numeral 318 (FIG. 3) in monitor process
314. On Microsoft Windows platforms, an application is gen-
erally a child process of Windows Explorer. Thus, monitor
process 314 determines if the parent process of software
video player 300 is Windows Explorer. If not, then monitor
process 314 assumes software video player 300 is being
debugged and step 1006 is followed by step 1010. Otherwise
step 1006 is followed by step 1008.
In step 1008, monitor process 314 waits for a timeout and
then returns to step 1002 to again loop through method 1000.
In step 1010, monitor process 314 applies debugging coun-
termeasures. This function is represented by reference
numeral 320 (FIG. 3) in monitor process 314. Debugging
countermeasures include forcibly terminating software video
player 300 and writing random data into process memory of
player 300.
To thwart any attempt to disable monitor process 314,
application layer 310 and BDMV engine 308 both periodi-
cally detect monitor process 314 after software video player
300 is started. If either application layer 310 or BDMV engine
308 cannot detect monitor process 314, it can forcibly termi-
nate player 300 as a precaution against debugging.
Various other adaptations and combinations of features of
the embodiments disclosed are within the scope of the inven-
tion. Numerous embodiments are encompassed by the fol-
lowing claims.
The invention claimed is:
1. A method for protecting a software video player having
Advanced Access Content System (AACS), comprising:
newly creating, by a processor, a temporary random key
each time the software video player is started;

encrypting, by the processor, a fixed random key with the
temporary random key to form an encrypted fixed ran-
dom key;

dividing, by the processor, the encrypted fixed random key

into the segments;

10

15

20

25

30

35

40

45

50

55

60

65

8

storing, by the processor, the segments at noncontiguous

regions of a main memory of the processor;

reading, by the processor, the segments from the noncon-

tiguous regions of the main memory;

assembling, by the processor, the segments to form the

encrypted fixed random key;

decrypting, by the processor, the encrypted fixed random

key with the temporary random key to form the fixed
random key;

extracting, by the processor, AACS key data from a pack

file;
decrypting, by the processor, the AACS key data with the
fixed random key to retrieve AACS Device Keys;

generating, by the processor, an AACS Title Key using the
AACS Device Key;

clearing, by the processor, the AACS Device Keys and the
fixed random key from the main memory after the AACS
Title Key is generated and before removal of an instance
of media from which encrypted AACS content are
retrieved;

decrypting, by the processor, the encrypted AACS content

with the AACS Title Key to form AACS content; and
displaying the AACS content.

2. The method of claim 1, wherein said reading, said
assembling, said decrypting the encrypted fixed random key,
said extracting, said decrypting the AACS key data, said
generating, said clearing, and said decrypting the encrypted
AACS content occur dynamically only when the AACS con-
tent must be displayed.

3. The method of claim 1, wherein said decrypting the
AACS key data further comprising retrieving AACS Host
Key, the method further comprising:

authenticating an optical disk drive using the AACS Host

Key; and

reading the encrypted AACS content from the optical disk

drive.

4. The method of claim 1, further comprising:

generating a random number at a first module of the soft-

ware video player;

transmitting the random number from a first module to a

second module of the software video player;
encrypting the random number with a predefined key at the
second module to form an encrypted random number;
transmitting the encrypted random number from the sec-
ond module to the first module;

decrypting the encrypted random number with the pre-

defined key at the first module; and

verifying the random number at the first module, wherein

the second module is authenticated with the first module
when the random number has not changed.

5. The method of claim 4, wherein the first and the second
modules are selected from the group consisting of a BDMV
engine, a codec engine, and an application layer.

6. The method of claim 5, wherein said displaying the
AACS content comprising transmitting the AACS content
from the BDMV engine to the codec engine, the codec engine
converting the AACS content into a video.

7. The method of claim 4, further comprising:

creating a random number key at the first module;

transmitting the random number key from the first module

to the second module;

encrypting AACS content with the random number key at

the first module;

transmitting the encrypted AACS content from the first

module to the second module; and

decrypting the encrypted AACS content with the random

number key at the second module.

US 9,137,015 B2

9

8. The method of claim 1, further comprising:

terminating the software video player after detecting a

debugger; and

terminating the software video player after detecting the

software video player is under a debugging condition.

9. The method of claim 8, wherein said detecting a debug-
ger comprises checking a thread information block (TIB) for
flags that identify a running thread of a debugging tool.

10. The method of claim 8, wherein said detecting a debug-
ger comprises creating object handles with driver, file, and
server names of the debugger, wherein the debugger is
detected when said creating fails.

11. The method of claim 8, wherein said detecting the
software video player is under a debugging condition com-
prises determining if a title of a parent process of the software
video player matches a title of a known program, the software
video player being under the debugging condition when the
title of the parent process does not match the title of the known
program.

12. The method of claim 1, further comprising executing
junk codes to obfuscate other steps being performed by the
software video player.

13. The method of claim 1, further comprising:

after decrypting the encrypted AACS content, encrypting

the AACS Title Key with a random number; and
decrypting the encrypted AACS Title Key only when it is
used again to decrypt the encrypted AACS content.

14. A non-transitory computer-readable storage medium
encoded with executable instructions for execution by a pro-
cessor to protect a software video player having Advanced
Access Content System (AACS), the instructions compris-
ing:

newly creating a temporary random key each time the

software video player is started;

encrypting a fixed random key with the temporary random

key to form an encrypted fixed random key;

dividing the encrypted fixed random key into the segments;

storing the segments at noncontiguous regions of a main

memory of the processor;

reading the segments from the noncontiguous regions of

the main memory;

assembling the segments to form the encrypted fixed ran-

dom key;

decrypting the encrypted fixed random key with the tem-

porary random key to form the fixed random key;
extracting AACS key data from a pack file;

decrypting the AACS key data with the fixed random key to

retrieve AACS Device Keys;

generating an AACS Title Key using the AACS Device

Key;
clearing the AACS Device Keys and the fixed random key
from the main memory after the AACS Title Key is
generated and before removal of an instance of media
from which encrypted AACS content are retrieved;
decrypting the encrypted AACS content with the AACS
Title Key to form AACS content; and

displaying the AACS content.

15. The non-transitory computer-readable storage medium
of claim 14, wherein said reading, said assembling, said
decrypting the encrypted fixed random key, said extracting,
said decrypting the AACS key data, said generating, said
clearing, and said decrypting the encrypted AACS content
occur dynamically only when the AACS content must be
displayed.

10

15

20

25

30

35

40

45

50

55

60

65

10

16. The non-transitory computer-readable storage medium
of claim 14, wherein said decrypting the AACS key data
further comprising retrieving AACS Host Key, the instruc-
tions further comprising:

authenticating an optical disk drive using the AACS Host

Key; and

reading the encrypted AACS content from the optical disk

drive.

17. The non-transitory computer-readable storage medium
of claim 14, wherein the instructions further comprise:

generating a random number at a first module of the soft-

ware video player;

transmitting the random number from a first module to a

second module of the software video player;
encrypting the random number with a predefined key at the
second module to form an encrypted random number;
transmitting the encrypted random number from the sec-
ond module to the first module;

decrypting the encrypted random number with the pre-

defined key at the first module; and

verifying the random number at the first module, wherein

the second module is authenticated with the first module
when the random number has not changed.

18. The non-transitory computer-readable storage medium
of claim 17, wherein the first and the second modules are
selected from the group consisting of a BDMV engine, a
codec engine, and an application layer.

19. The non-transitory computer-readable storage medium
of claim 18, wherein said displaying the AACS content com-
prising transmitting the AACS content from the BDMV
engine to the codec engine, the codec engine converting the
AACS content into a video.

20. The non-transitory computer-readable storage medium
of claim 17, wherein the instructions further comprise:

creating a random number key at the first module;

transmitting the random number key from the first module
to the second module;

encrypting AACS content with the random number key at

the first module;

transmitting the encrypted AACS content from the first

module to the second module; and

decrypting the encrypted AACS content with the random

number key at the second module.

21. The non-transitory computer-readable storage medium
of 14, wherein the instructions further comprise:

terminating the software video player after detecting a

debugger; and

terminating the software video player after detecting the

software video player is under a debugging condition.

22. The non-transitory computer-readable storage medium
of claim 21, wherein said detecting a debugger comprises
checking a thread information block (TIB) for flags that iden-
tify a running thread of a debugging tool.

23. The non-transitory computer-readable storage medium
of claim 21, wherein said detecting a debugger comprises
creating object handles with driver, file, and server names of
the debugger, wherein the debugger is detected when said
creating fails.

24. The non-transitory computer-readable storage medium
of'claim 21, wherein said detecting the software video player
is under a debugging condition comprises determining if a
title of a parent process of the software video player matches
a title of a known program, the software video player being
under the debugging condition when the title of the parent
process does not match the title of the known program.

US 9,137,015 B2

11

25. The non-transitory computer-readable storage medium
of'claim 14, wherein the instructions further comprise execut-
ing junk codes to obfuscate other steps being performed by
the software video player.

26. The non-transitory computer-readable storage medium
of claim 14, wherein the instructions further comprise:

after decrypting the encrypted AACS content, encrypting

the AACS Title Key with a random number; and
decrypting the encrypted AACS Title Key only when it is
used again to decrypt the encrypted AACS content.

#* #* #* #* #*

5

10

12

